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Carlson's theorem [1, p. 153] states that an entire function of exponen­
tial type less than n must vanish identically if it vanishes at the integers.
The problem of extending Carlson's theorem to harmonic functions u(z)
was posed in [2], where Boas showed that u(z):=O provided it vanishes on
two parallel lines of lattice points.

Let f(z)=u(z)+iv(z), with u(m)=O, -00 <m< 00. By assuming
{f(m)} Ell, it can be shown that f(z):= °provided that u(m + i) =°or
v(m + i) = 0, - 00 < m < 00 (see [5, pp. 3-9]). In this paper I shall prove
that u(z) need only vanish at z = m + i, - 00 < m < 00, in order to vanish
identically, The proof relies heavily on the assumption that {f(m)} Ell, for
then f(z) has the representation

f(z)=1'(O) sin nz + fen) sin ttz + z sin ttZ L (-on fen)
1t 11:Z 11: n'l"O n(z-n)

(see [1, p. 221]), and u(m + i) is the mth Fourier coefficient of

00 00

F(x) = cosh x L u(n) einX + isinh x L v(n)einX, Ixl < tt

(see [5, pp.17-18]). By considering g(z) = f(z + i), we may restate the
main result as follows.

THEOREM. Let f(z) be an entire function of exponential type less than 11:,

with {f(m+i)}EII.lfRef(m}=O, -oo<m<oo, thenf(z):=O.

Hence a harmonic function must vanish identically if it vanishes at the
integers and belongs to lIon a parallel line of lattice points. Note the
necessity of the growth restriction: consider the real part of f(z) = iz.

Let us begin by establishing the following two lemmas.
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LEMMA 1. Let f(z) be an entire function of exponential type r less
than n. Let f(z)=u(z)+iv(z) (u,v, real), {j(m)} Ell, and u(m+i)=O,
- 00 < m < 00. If v(m) = 0, m =0, ± 1, ±2, ..., thenf(z) == 0.

Proof Since f(z) is of exponential type r less than n and is bounded at
the integers, it follows from Cartwright's theorem [1, p. 180] that f(x) is
bounded for all real x. Hence f(z) has the representation

[1, p.221]. Set z=m+i, keeping in mind that f(n)=u(n) and
sin n(m + i) = i( _l)m sinh n, to obtain

f(m + i) = v'(O)( -1 )m+ 1 sinh n + iu'(O)( _1)m sinh n
n n

Multiply both summands on the right of the above equation by
«m-n)-i)/«m-n)-i) to obtain

f(m + i) = v'(O)( -1 )m+ 1 sinh n + iu'(O)( _l)m sinh n
n n
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We then have

sinh n [ , ( _1)m
Re f(m + i) = u(m + i)=-- v (0)( -1 )m+1 +u(O) -2-1

n m +
+m 2: (_1)m-n u(n) - 2: (_l)m-n(m-n)u(n)]

n..on[(m-n)2+1] n"O n[(m-n)2+1] ,

sinh n [ , ( - I)m m
Imf(m+i)=v(m+i)=-- u(O)(_l)m+u(O) ~ 1

n . m-+

,,(_1)m-n(m-n)u(n) " (_1)m-n u(n) J
+m /:0 m[(m-n)2+1] + n~on[(m-n)2+1] .

By [4, p. 12] with a=b= 1, I=n,

( _1)m

m 2 + 1

is the mth Fourier coefficient of

n cosh x
sinh n '

Hence,

-n~x~n.

is the mth Fourier coefficient of

u(O) cosh x, -n~x~n.

Since the convolution of the Fourier coefficients of two functions yields the
Fourier coefficients of the product of the functions [3, p. 23], we have that

is the mth Fourier coefficient of

1 d [ u(n) . ]-:- cosh x L -'_e tnX
,

I dx n"O n

Similarly, by [4, p. 13], we have, for a = b = 1, 1= n,
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is the mth Fourier coefficient of

-in sinh x

sinh n '

so that

-n<x<n,

-Sinhn[ L (_l)m-n(m-n)u(n)]

n n"O n[(m-n)2+1]

is the mth Fourier coefficient of

-n<x<n.

Assuming v'(o) =0, we have

is the mth Fourier coefficient of

F(x) = sinh n [u(o).n cosh x +~~ {n ~osh x L u(n) einx }
n smh n 1 dx smh n n" 0 n

in sinh x " u(n) . J+ ~ _emx -n<x<n.
sinh n n ,. 0 n '

Simplifying, we find that u(m + i) is the mth Fourier coefficient of

. " u(n) . ".F(x)=u(O)coshx-ismhx ~ -emx+coshx ~ u(n)emx

n"O n nT"O

00

F(x) =cosh x L: u(n) einX,
- 00

The hypothesis implies that

-n<x<n.

1 f" .-2 F(x) e-,mx dx = 0,
n _"

-00 <m< co.



CARLSON'S THEOREM FOR HARMONIC FUNCTIONS 235

By the completeness of {e imX
} (- 00 < m < 00), over (-n, n) we have that

F(x) is equivalent to zero. Since cosh x never vanishes, we conclude that
u(n):=O. Hence f(n)=iv(n)=O for all n, and by Carlson's theorem
[1, p.153]f(z):=O.

If v/(O) does not vanish, then u(m + i) + «sinh n)/n) v'(O)( _l)m is the
mth Fourier coefficient of F(x). By hypothesis, u(m + i) = °for all m. Since
the Fourier coefficients of F(x) must approach zero, we must have
v/(O) = 0. Now proceed as above and conclude that f(z) is equivalent to
zero.

LEMMA 2. With the hypotheses of Lemma 1, if v(m + i) = 0,
- 00 < m < 00, then f(z):= 0.

Proof Consider g(z) = -if(z).

We now prove the main result.

THEOREM. Let f(z) be an entire function of exponential type T less than
n, with {j(m + i)} E [I . .if Re f(m) = 0, - 00 < m < 00, then f(z):= 0.

Proof Let g(z)=f(z+i). If g(z)=u(z)+iv(z) (u,v, real), then by
[5, p. 18] we have that u(m + i) is the mth Fourier coefficient of

00 00

F(x) =cosh x L u(n) e inx + i sinh x L v(n) einX
, Ixl < n. (1)

- 00

The hypothesis implies that

1 f" .- F(x) e- lmX dx=O,
2n _"

- 00

-00 <m< 00,

so that F(x) vanishes identically. Therefore the real and imaginary parts of
F(x) must vanish, so that we have

00 00

cosh x L u(n) cosnx-sinh x L v(n)sinnx=O
- 00 - 00

00 00

cosh x L u(n) sinnx + sinh x L v(n) cos nx =O.
- 00 -if)

Written in matrix form, the above equations become

[
~ u(ulcosnx

L u(n) sin nx
- 00

-:~ "(u) sin ux]

L v(n) cos nx
- 00

[

COSh
X

] =0

smh x
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and this system has a nontrivial solution if and only if its determinant
vanishes. Hence we have

ro 00 00 00

L u(n)cosnx L v(m)cosmx+ L u(n)sinnx L v(m)sinmx=O,

or

- 00 - 00 - 00

00 00

L L u(n)v(m)cos(n-m)x=O.
-00 -00

(2)

Fix k an integer, and multiply (2) by cos kx and integrate over (-n, n).
We obtain

r f f u(n) v(m)cos(n-m)xcos kxdx=O. (3)
-7( -00 -oc

Now the left-hand side of (3) has the value zero whenever n - m =f k. For
n - m = k, the integral has the value L~oo L~oo u(n) v(m). Hence,

and

00 00

L L u(n)v(m)=O,
-00 -00

00

L u(n) v(n-k)=O,
n= -00

n-m=k

for all k. (4)

Let U(x) =L~oo u(n) einx
, Vex) =L~oo v(m) eimx

, Ixl < n. Then (4) implies
that

U(x) Vex) =o. (5)

Squaring (1) and using (5), we have that

[F(x)] 2 = cosh 2 x[ U(x)J 2
- sinh 2 x[ V(x)J 2 = O. (6)

Since F(x) =0, (l) implies that

cosh xU(x) = -i sinh xV(x)

and

(7)

Substitute (7) into (6) and obtain

2 cosh2 x[ U(X)]2 = 0.
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Since cosh x never vanishes, we have L ~ 00 u(n) einx = °and u(n) = °for all
n. By [5, p. 3], g(z) == 0, and so f(z) == 0.

When substituting (7) in (6) we may also obtain

-2 sinh 2 x[ V(X)]2 = 0.

Hence L~oo v(n)einX=O and v(n)=O for all n. By Lemma 1, g(z) =:0, and
so f(z) == O.

COROLLARY. Let f(z) be an entire function of exponential type'! less
than n, with {f(m + i)} Ell. If 1m f(m) = 0, - 00 < m < 00, then f(z) == O.

Proof Consider h(z) = -if(z). Now proceed as in the proof of the
theorem, and use [5, p. 8] and Lemma 2.
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